3.15.1 \(\int \frac {(c e+d e x)^{7/2}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx\) [1401]

Optimal. Leaf size=124 \[ -\frac {10 e^3 \sqrt {c e+d e x} \sqrt {1-c^2-2 c d x-d^2 x^2}}{21 d}-\frac {2 e (c e+d e x)^{5/2} \sqrt {1-c^2-2 c d x-d^2 x^2}}{7 d}+\frac {10 e^{7/2} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {c e+d e x}}{\sqrt {e}}\right )\right |-1\right )}{21 d} \]

[Out]

10/21*e^(7/2)*EllipticF((d*e*x+c*e)^(1/2)/e^(1/2),I)/d-2/7*e*(d*e*x+c*e)^(5/2)*(-d^2*x^2-2*c*d*x-c^2+1)^(1/2)/
d-10/21*e^3*(d*e*x+c*e)^(1/2)*(-d^2*x^2-2*c*d*x-c^2+1)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {706, 703, 227} \begin {gather*} \frac {10 e^{7/2} F\left (\left .\text {ArcSin}\left (\frac {\sqrt {c e+d x e}}{\sqrt {e}}\right )\right |-1\right )}{21 d}-\frac {10 e^3 \sqrt {-c^2-2 c d x-d^2 x^2+1} \sqrt {c e+d e x}}{21 d}-\frac {2 e \sqrt {-c^2-2 c d x-d^2 x^2+1} (c e+d e x)^{5/2}}{7 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^(7/2)/Sqrt[1 - c^2 - 2*c*d*x - d^2*x^2],x]

[Out]

(-10*e^3*Sqrt[c*e + d*e*x]*Sqrt[1 - c^2 - 2*c*d*x - d^2*x^2])/(21*d) - (2*e*(c*e + d*e*x)^(5/2)*Sqrt[1 - c^2 -
 2*c*d*x - d^2*x^2])/(7*d) + (10*e^(7/2)*EllipticF[ArcSin[Sqrt[c*e + d*e*x]/Sqrt[e]], -1])/(21*d)

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 703

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[(4/e)*Sqrt[-c/(b^2
- 4*a*c)], Subst[Int[1/Sqrt[Simp[1 - b^2*(x^4/(d^2*(b^2 - 4*a*c))), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a
, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 706

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[2*d*(d + e*x)^(m - 1
)*((a + b*x + c*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] + Dist[d^2*(m - 1)*((b^2 - 4*a*c)/(b^2*(m + 2*p + 1))), In
t[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[
2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] &
& RationalQ[p]) || OddQ[m])

Rubi steps

\begin {align*} \int \frac {(c e+d e x)^{7/2}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx &=-\frac {2 e (c e+d e x)^{5/2} \sqrt {1-c^2-2 c d x-d^2 x^2}}{7 d}+\frac {1}{7} \left (5 e^2\right ) \int \frac {(c e+d e x)^{3/2}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx\\ &=-\frac {10 e^3 \sqrt {c e+d e x} \sqrt {1-c^2-2 c d x-d^2 x^2}}{21 d}-\frac {2 e (c e+d e x)^{5/2} \sqrt {1-c^2-2 c d x-d^2 x^2}}{7 d}+\frac {1}{21} \left (5 e^4\right ) \int \frac {1}{\sqrt {c e+d e x} \sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx\\ &=-\frac {10 e^3 \sqrt {c e+d e x} \sqrt {1-c^2-2 c d x-d^2 x^2}}{21 d}-\frac {2 e (c e+d e x)^{5/2} \sqrt {1-c^2-2 c d x-d^2 x^2}}{7 d}+\frac {\left (10 e^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^4}{e^2}}} \, dx,x,\sqrt {c e+d e x}\right )}{21 d}\\ &=-\frac {10 e^3 \sqrt {c e+d e x} \sqrt {1-c^2-2 c d x-d^2 x^2}}{21 d}-\frac {2 e (c e+d e x)^{5/2} \sqrt {1-c^2-2 c d x-d^2 x^2}}{7 d}+\frac {10 e^{7/2} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {c e+d e x}}{\sqrt {e}}\right )\right |-1\right )}{21 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.06, size = 86, normalized size = 0.69 \begin {gather*} -\frac {2 e^3 \sqrt {e (c+d x)} \left (\sqrt {1-c^2-2 c d x-d^2 x^2} \left (5+3 c^2+6 c d x+3 d^2 x^2\right )-5 \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};(c+d x)^2\right )\right )}{21 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)^(7/2)/Sqrt[1 - c^2 - 2*c*d*x - d^2*x^2],x]

[Out]

(-2*e^3*Sqrt[e*(c + d*x)]*(Sqrt[1 - c^2 - 2*c*d*x - d^2*x^2]*(5 + 3*c^2 + 6*c*d*x + 3*d^2*x^2) - 5*Hypergeomet
ric2F1[1/4, 1/2, 5/4, (c + d*x)^2]))/(21*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(211\) vs. \(2(104)=208\).
time = 0.76, size = 212, normalized size = 1.71

method result size
default \(\frac {\sqrt {e \left (d x +c \right )}\, \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}\, e^{3} \left (-6 d^{5} x^{5}-30 c \,d^{4} x^{4}-60 c^{2} d^{3} x^{3}-60 c^{3} x^{2} d^{2}-30 c^{4} d x -4 d^{3} x^{3}-6 c^{5}-12 c \,d^{2} x^{2}+5 \sqrt {-2 d x -2 c +2}\, \sqrt {d x +c}\, \sqrt {2 d x +2 c +2}\, \EllipticF \left (\frac {\sqrt {-2 d x -2 c +2}}{2}, \sqrt {2}\right )-12 c^{2} d x -4 c^{3}+10 d x +10 c \right )}{21 d \left (d^{3} x^{3}+3 c \,d^{2} x^{2}+3 c^{2} d x +c^{3}-d x -c \right )}\) \(212\)
risch \(\frac {2 \left (3 d^{2} x^{2}+6 c d x +3 c^{2}+5\right ) \left (d x +c \right ) \left (d^{2} x^{2}+2 c d x +c^{2}-1\right ) \sqrt {e \left (d x +c \right ) \left (-d^{2} x^{2}-2 c d x -c^{2}+1\right )}\, e^{4}}{21 d \sqrt {-e \left (d x +c \right ) \left (d^{2} x^{2}+2 c d x +c^{2}-1\right )}\, \sqrt {e \left (d x +c \right )}\, \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}}+\frac {10 \left (-\frac {c -1}{d}+\frac {c +1}{d}\right ) \sqrt {\frac {x +\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c +1}{d}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {c +1}{d}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}\, \EllipticF \left (\sqrt {\frac {x +\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c +1}{d}}}, \sqrt {\frac {-\frac {c +1}{d}+\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c}{d}}}\right ) \sqrt {e \left (d x +c \right ) \left (-d^{2} x^{2}-2 c d x -c^{2}+1\right )}\, e^{4}}{21 \sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -c^{3} e +d x e +c e}\, \sqrt {e \left (d x +c \right )}\, \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}}\) \(415\)
elliptic \(\frac {\sqrt {-e \left (d x +c \right ) \left (d^{2} x^{2}+2 c d x +c^{2}-1\right )}\, \sqrt {e \left (d x +c \right )}\, \left (-\frac {2 d \,e^{3} x^{2} \sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -c^{3} e +d x e +c e}}{7}-\frac {4 c \,e^{3} x \sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -c^{3} e +d x e +c e}}{7}-\frac {2 \left (\frac {18 c^{2} d^{2} e^{4}}{7}+\frac {2 d \,e^{3} \left (-\frac {15}{2} c^{2} d e +\frac {5}{2} d e \right )}{7}\right ) \sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -c^{3} e +d x e +c e}}{3 d^{3} e}+\frac {2 \left (e^{4} c^{4}+\frac {4 c \,e^{3} \left (-c^{3} e +c e \right )}{7}+\frac {2 \left (\frac {18 c^{2} d^{2} e^{4}}{7}+\frac {2 d \,e^{3} \left (-\frac {15}{2} c^{2} d e +\frac {5}{2} d e \right )}{7}\right ) \left (-\frac {3}{2} c^{2} d e +\frac {1}{2} d e \right )}{3 d^{3} e}\right ) \left (-\frac {c +1}{d}+\frac {c -1}{d}\right ) \sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c +1}{d}}}\, \EllipticF \left (\sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}, \sqrt {\frac {-\frac {c -1}{d}+\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\right )}{\sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -c^{3} e +d x e +c e}}+\frac {2 \left (4 c^{3} d \,e^{4}+\frac {2 d \,e^{3} \left (-2 c^{3} e +2 c e \right )}{7}+\frac {4 c \,e^{3} \left (-\frac {9}{2} c^{2} d e +\frac {3}{2} d e \right )}{7}-\frac {2 \left (\frac {18 c^{2} d^{2} e^{4}}{7}+\frac {2 d \,e^{3} \left (-\frac {15}{2} c^{2} d e +\frac {5}{2} d e \right )}{7}\right ) c}{d}\right ) \left (-\frac {c +1}{d}+\frac {c -1}{d}\right ) \sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c +1}{d}}}\, \left (\left (-\frac {c -1}{d}+\frac {c}{d}\right ) \EllipticE \left (\sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}, \sqrt {\frac {-\frac {c -1}{d}+\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\right )-\frac {c \EllipticF \left (\sqrt {\frac {x +\frac {c -1}{d}}{-\frac {c +1}{d}+\frac {c -1}{d}}}, \sqrt {\frac {-\frac {c -1}{d}+\frac {c +1}{d}}{-\frac {c -1}{d}+\frac {c}{d}}}\right )}{d}\right )}{\sqrt {-d^{3} e \,x^{3}-3 c \,d^{2} e \,x^{2}-3 c^{2} d e x -c^{3} e +d x e +c e}}\right )}{\left (d x +c \right ) \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}\, e}\) \(923\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^(7/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/21*(e*(d*x+c))^(1/2)*(-d^2*x^2-2*c*d*x-c^2+1)^(1/2)*e^3*(-6*d^5*x^5-30*c*d^4*x^4-60*c^2*d^3*x^3-60*c^3*x^2*d
^2-30*c^4*d*x-4*d^3*x^3-6*c^5-12*c*d^2*x^2+5*(-2*d*x-2*c+2)^(1/2)*(d*x+c)^(1/2)*(2*d*x+2*c+2)^(1/2)*EllipticF(
1/2*(-2*d*x-2*c+2)^(1/2),2^(1/2))-12*c^2*d*x-4*c^3+10*d*x+10*c)/d/(d^3*x^3+3*c*d^2*x^2+3*c^2*d*x+c^3-d*x-c)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^(7/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((d*x*e + c*e)^(7/2)/sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.38, size = 94, normalized size = 0.76 \begin {gather*} -\frac {2 \, {\left ({\left (3 \, d^{4} x^{2} + 6 \, c d^{3} x + {\left (3 \, c^{2} + 5\right )} d^{2}\right )} \sqrt {-d^{2} x^{2} - 2 \, c d x - c^{2} + 1} \sqrt {d x + c} e^{\frac {7}{2}} + 5 \, \sqrt {-d^{3} e} e^{3} {\rm weierstrassPInverse}\left (\frac {4}{d^{2}}, 0, \frac {d x + c}{d}\right )\right )}}{21 \, d^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^(7/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x, algorithm="fricas")

[Out]

-2/21*((3*d^4*x^2 + 6*c*d^3*x + (3*c^2 + 5)*d^2)*sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1)*sqrt(d*x + c)*e^(7/2) + 5*
sqrt(-d^3*e)*e^3*weierstrassPInverse(4/d^2, 0, (d*x + c)/d))/d^3

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (e \left (c + d x\right )\right )^{\frac {7}{2}}}{\sqrt {- \left (c + d x - 1\right ) \left (c + d x + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**(7/2)/(-d**2*x**2-2*c*d*x-c**2+1)**(1/2),x)

[Out]

Integral((e*(c + d*x))**(7/2)/sqrt(-(c + d*x - 1)*(c + d*x + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^(7/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate((d*x*e + c*e)^(7/2)/sqrt(-d^2*x^2 - 2*c*d*x - c^2 + 1), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c\,e+d\,e\,x\right )}^{7/2}}{\sqrt {-c^2-2\,c\,d\,x-d^2\,x^2+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)^(7/2)/(1 - d^2*x^2 - 2*c*d*x - c^2)^(1/2),x)

[Out]

int((c*e + d*e*x)^(7/2)/(1 - d^2*x^2 - 2*c*d*x - c^2)^(1/2), x)

________________________________________________________________________________________